Chapter 6

L? Spaces

6.1 Basic properties

The Lebesgue spaces, also known as the LP spaces, constitute a rich
source of examples and counter-examples in functional analysis. They
also form an important class of function spaces when studying the ap-
plications of mathematical analysis. In this chapter, we will study the
important properties of these spaces from the functional analytic point
of view.

Let (X, S, 1) be a measure space (cf. Section 1.3). Let f: X —» R
be a real valued measurable function defined on X. Let 1 < p < co. We

define 3
Il = ( [ e du)’ (6.1.1)

and we say that f is p-integrable (integrable, if p = 1 and square
integrable, if p = 2) if || f||, < oo. Next, let M > 0. We set

{If| >M} = {zeX||f(z)| > M}
We now define
|fllo = inf{M >0 | u({|f] > M}) =0} (6.1.2)

and we say that f is essentially bounded if || f||lcc < 00.

Proposition 6.1.1 (Hélder’s Inequality) Let 1 < p < co and let p*
be the conjugate exponent. If f is p-integrable and g is p*-integrable
(essentially bounded, if p=1), then

fx ol du < N1 Flpllgllee- (6.0.3)
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Proof: If p = 1, then p* = co. Then

|f(@)g(2)| < |f(2)l-lglloo

for almost every z € X and then (6.1.3) follows on integrating this
inequality over X.

Let us now assume that 1 < p < co so that 1 < p* < 0o as well. The
relation (6.1.3) is trivially true if || f||, (respectively, ||g||p+) equals zero,
for then f (respectively, g) will be equal to zero almost everywhere. So
we assume further that || f||, # 0 and that ||g||,» # 0. Then (cf. Lemma
2.2.1)

1 1 .
|f(z)g(x)| < 5|f($)|”+ Eig(w)l”
for all z € X. Assume now that || f|[, = ||g|lp» = 1. Then, integrating
the above inequality over X, we get
1 1
dp < —+— = 1
fx |fgl dp P

For the general case, apply the preceding result to the functions f/|| |,
and g/||g|l,» to get (6.1.3). W

Remark 6.1.1 When p = p* = 2, once again (6.1.3) is known as the
Cauchy-Schwarz inequality. B

Proposition 6.1.2 (Minkowski’s Inequality) Let 1 < p < co. Let f
and g be p-integrable. Then f + g is also p-integrable and

If+gll, < £, + llgllp- (6.1.4)

Proof: We assume that ||f + g||, # 0, since, otherwise, the result is
trivially true. Since the function ¢ — |¢[P is convex for 1 < p < o0, we
have that

f(z) +9(@)P < 227(|f ()P + |g(=)PP)
from which it follows that f+ g is also p-integrable. Thus, if 1 < p < oo,
we have

f F+oPdu < f IF + 9P~ du+ f | + gPg] dps.
X X X

We apply Holder’s inequality to each of the terms on the right-hand side.
Notice that |f(z) + g(z)|?~V?" = |f(z) + g(z)[P by the definition of p*.
Thus |f + g|P~! is p*-integrable and

o 5
I1f+glP e = IIf +9ll"
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Thus, %
If+gllp < If +glis Uflle + llgllp)-

Dividing both sides by ||f + g||§; and using, once again, the definition
of p*, we get (6.1.4). The cases where p =1 and p = oo follow trivially
from the inequality

|f(z) + g9(z)| < |f(z)] + lg(z)].

This completes the proof. I

It is now easy to see that the space of all p-integrable functions
(1 £ p < o0) and that of all essentially bounded functions are vector
spaces and that the map f — |[f|l, for 1 < p < oo verifies all the
properties of the norm, except that || f||, = 0 does not imply that f = 0,
but that f = 0 almost everywhere (a.e.; cf. Section 1.3).

Given two measurable functions f and g, we say that f ~gif f=¢g
almost everywhere, i.e. f(z) = g(z) everywhere, except over a subset
of measure zero. This defines an equivalence relation. If f ~ g, then for
1 < p < 0o, we have that ||f||, = ||g|l,- Further the set of all equiva-
lence classes forms a vector space with respect to pointwise addition and
scalar multiplication defined via arbitrary representatives of equivalence
classes. In other words, if fi; ~ fs and if g; ~ go, then fi + g1 ~ fo+ g2
and, for any scalar o, we also have af; ~ afz and so on. Since ||.||, is
also constant on any equivalence class, we can define the ‘norm’ of an
equivalence class via any representative function of that class. Further,
if || f||p = 0, then f will belong to the equivalence class of the function
which is identically zero. Thus the set of all equivalence classes, with
||-|lp, becomes a normed linear space.

Definition 6.1.1 Let (X,S,u) be a measure space. Let 1 < p < oo.
The space of all equivalence classes, under the equivalence relation de-
fined by equality of functions almost everywhere, of all p-integrable func-
tions is a normed linear space with the norm of an eguivalence class
being the ||.||p-‘norm’ of any representative of that class. This space is
denoted LP(u). The space of all equivalence classes of all essentially
bounded functions with the norm of an equivalence class being defined as
the ||.||co- ‘norm’ of any representative of that class, is denoted L*(u). B

While we may often talk of ‘ LP-functions’ we must keep in mind that
we are really talking about equivalence classes of functions and that we
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carry out computations via representatives of those equivalence classes.

Notation We will denote elements of LP(u) by lower case Roman letters
in sanserif font and a generic representative of the equivalence class it
represents by the same lower case Roman letter in italicised font. Thus if
we have f € LP(u), a generic representative will be f and so, for instance,

1
P
Ifllp = ( [ i dp)
X
for 1 < p < oo.

Similarly, the equivalence class of a function f will be denoted by f.

Notation If X = (2, an open set of R" provided with the Lebesgue
measure, then the corresponding spaces LP(u) will be denoted LP(2).
In particular, if R is provided with the Lebesgue measure and if (a, b) is
an interval, where —oo < a < b < 400, then the L? spaces on (a,b) will
be denoted L*(a, b).

Example 6.1.1 Let X = {1,2,---,n}. Let S be the collection of all sub-
sets of X and let u be the counting measure (cf. Example 1.3.1). Then
a measurable function can be identified with an n-tuple (a1, a2, -,an).
In this case LP(u) = £;. Notice that in this example, equality almost
everywhere is the same as equality everywhere and so every equivalence
class is a singleton. B

Example 6.1.2 Let X = N, the set of all natural numbers and let S
be the collection of all subsets of X. Let x4 be the counting measure. In
this case, functions are identified with real sequences and LP(u) = £,.
Again, in this example, equivalence classes are just singletons. l

Proposition 6.1.3 Let (X,S,u) be a finite measure space, i.e. u(X) <
0o. Then

LP(u) C Li(p)

with the inclusion being continuous, whenever 1 < q < p.

Proof: The result is trivial if p = c0. Let 1 < ¢ < p < 0o and let
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f € LP(u). Then, by Holder’s inequality, we have

fifttdn < (ff0F du)? (i dn)™?

(fx |fP duw)? (X))~
1113 (1( X))

which yields
Iflly <C Il

where .

1_
C = (u(X))+7%.
This completes the proof. B

Example 6.1.3 No such inclusions hold in infinite measure spaces. For
instance, the sequence (-};) belongs to £3 but not to ¢,. W

Example 6.1.4 Nothing can be said about the reverse inclusions. For
example, if f(z) = 1//z, then f € L}(0,1) but f ¢ L?(0,1). However,
we know that (cf. Exercise 2.25) £, C {; forall1<p<g<oo. H

Theorem 6.1.1 Let (X,S,u) be a measure space. Let 1 < p < o0.
Then LP(u) is a Banach space.

Proof: Case 1. Let 1 < p < co. Let {f,} be a Cauchy sequence in
LP(u). It is enough to show that there exists a convergent subsequence
(why?). Choose a subsequence such that

o = Frnly < o5
Set .
(@) = Y |fress (@) = frr ()|
k=1
and o
9(z) = Zlfﬂk+1(x)_fﬂk(m)|'
k=1
Then

"9n||p < L
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It follows that g,(z) — g(z) and, by the monotone convergence theorem
(cf. Theorem 1.3.1), we see that ||g||, < 1. In particular, g(z) < oo
almost everywhere. Further, if k > | > 2, we have

If'nk(x) fm (IB | < |fﬂ;¢(m) - fﬂk_1 (.T)l B Ghet ¢ |fﬂ-:+1 (:E) - fn:(m)'
9(z) — gi-1(z).

Thus, it follows that, for almost every z € X, {fn, ()} is a Cauchy

sequence and converges almost everywhere to a finite limit f(z) and
that, for such z,

|f(2) — fri ()] < g()

for k > 2. Set f = 0 elsewhere, which is a set of measure zero. It
then follows that f is p-integrable. Further, |f,, (z) — f(z)[P — 0 almost
everywhere and is bounded by |g(z)|? which is integrable. Hence, by the
dominated convergence theorem (cf. Theorem 1.3.3), we deduce that
| fn, — fllp = 0. Thus we have that

fn, — f
in LP(p).

Case 2. p = co. Let {f,} be Cauchy in L*°(u). Then, for each k, there
exists a positive integer Ny, such that

1
”fm_fn”m < E

for all m,n > Ni. Thus, there exists a set Ej of measure zero, such that

1

|fm(2) — fa(z)] < -

for all m,n > Nj and for all z € X\Ey. Setting E = U2, E}, we see
that E is of measure zero and for all z € X\ E, the sequence {f,(z)} is

a Cauchy sequence in R. Thus, for all such z, f,(z) — f(z). Passing to
the limit as m — oo, we see that, for all z € X\ E, and for all n > Ny,

1
|f(2) = falz)| < =
Hence, it follows that f is essentially bounded and that f, — f in L®(u).

This completes the proof. B
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Corollary 6.1.1 Let (X,S,u) be a measure space and let f, — f in
LP(u) for some 1 < p < co. Then, there erists a subsequence f,, such
that

(i) fn,(z) = f(z) almost everywhere.

(ii) |fre(z)| < h(z) almost everywhere for some h € LP(u).

Proof: The result is obvious in the case p = 0o. Let 1 < p < 00. Then,
as in the case of the preceding theorem, we have a subsequence {fy, }
which converges to a function f in L?(x)and also such that f, (z) — f(z)
almost everywhere. It is then clear that f = f, ie. f = f almost
everywhere and this proves (i). To see (ii), take h = f + g, where g is
as in the proof of the preceding theorem. W

6.2 Duals of L” Spaces

In Chapter 3, we identified the dual of the space £, with {,» where
1 < p < oo and p* is the conjugate exponent of p. Similar results are
true in more general L? spaces.

Proposition 6.2.1 (Clarkson’s Inequality) Let (X,S,u) be a mea-
sure space and let 2 < p < co. Then if f and g € LP(u),

P P 1
+zE=o)| < 3 (fIE+lel?)- (6.2.1)

p
Proof: Consider the function

ox) = @2+1)F—2P -1

for £ > 0. Then it is simple to check that ©(0) = 0 and that ¢'(z) > 0
for x > 0 when p > 2. Thus, it follows that for all z > 0,

(22 +1)% > 2P +1,

1
S(f+g)

p

when p > 2. Hence, if a and 3 are positive real numbers, we have
@+ 8% > o +pP.

Combining this with the fact that the function ¢ — t3 is convex on the
set {t € R | t > 0}, we get, for any z € X and for any f and g € LP(u),

P (| fgzl-;ggz! f(z)—a(z) 2)"’3
(et gsert)
3(F(@)IP + |g(z)[P)

farte(@) | | | fe)-ala) ’ +

IA

IA
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which yields (6.2.1) on integration over X. B

Corollary 6.2.1 Let (X,S,u) be a measure space. Then, the spaces
L?(u) are reflexive when 2 < p < 0.

Proof: Arguing as in Example 5.5.2, it is easy to see that (6.2.1) implies
that LP(u) is uniformly convex when 2 < p < o0o. The reflexivity now
follows from Theorem 5.5.1. B

Theorem 6.2.1 (Riesz Representation Theorem) Let (X, S, 1) be
a measure space and let 1 < p < oo. Let p* be the conjugaie ezxpo-
nent. Then the dual of LP(u) is isometrically isomorphic to LP" (u). In
particular, the spaces LP(u) are reflexive for all 1 < p < oo.

Proof: Step 1. Let g € L?"(u). Define Ty : LP(u) = R by

Tg(f) = fx fgdu

for f € LP(u). Clearly, T is a linear functional, and, by Holder’s in-
equality, it is continuous as well. In fact, we have

IZell < lell--

Now, consider the function

_ [ lg@)P"2g(z), if g(z) #0
=) = {og, . ifg(s;)=o.

Then |f|P = |g|®"~VP = |g|P" so that f is p-integrable. Also

T(f) = [ loP" du
X
from which we deduce that

ITell = llgllz=-

Thus, the map g — T is an isometry from LP"(y) into LP(u)*. Hence
its image is closed. It is enough now to show that the image is dense.

Step 2. We now show that LP(u) is reflexive for all 1 < p < co. This
has already been proved for 2 < p < co. Thus LP(u)* is also reflexive
for such p and so is every closed subspace of this dual space. Thus, by
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the preceding step, LP" (1) which is isometrically isomorphic to a closed
subspace of the dual of LP(u) is also reflexive for 2 < p < 0o. But then
1 < p* < 2. This proves that LP(u) is also reflexive when 1 < p < 2.
This establishes the claim.

Step 3. We are now in a position to show that the isometry g — T
from LP"(u) to the dual space LP(u)* is onto. As already observed, the
image is a closed subspace and we now show that it is dense. Indeed,
let ¢ € LP(p)** vanish on the image. We need to show that ¢ is the
zero functional. Since all the LP(u) are reflexive, this means that there
exists f € LP(u) such that, for all g € L?" (), we have

./xfgdu = 0.

Once again, choosing g = |f|P~2f (and equal to zero where f vanishes)
we deduce that f = 0. This completes the proof. B

Remark 6.2.1 We have seen earlier that £] = ¢,,. In the same way, it
is true that for o-finite measure spaces, we have L (u)* = L% (). How-
ever, the proof of this result relies on very measure theoretic arguments
and we shall omit it. Nevertheless, in the next section, we will prove it
for a very important class of L' spaces. B

6.3 The Spaces L*((2)

In this section, we will study the properties of a very important class of
LP spaces defined on open sets in the Euclidean spaces RY.
Let Q ¢ RY be an open set. Consider the Lebesgue measure on this

set. Then, as mentioned in Section 6.1, we will denote the corresponding
L? spaces by LP(Q2).

In the sequel, if we say that a certain function space is contained in
(respectively, is dense in), LP(£2), we will understand that we are talking
about the set of all equivalence classes of functions in that space being
contained in (respectively, being dense in) LP(2).

Proposition 6.3.1 Let S be the set of all simple functions which vanish
outside a set of finite measure. Then S is dense in LP(2) for 1 < p < oo.
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Proof: Let ¢ € S. Since ¢ vanishes outside a set of finite measure,
it is automatically p-integrable for 1 < p < oo. Let f > 0 be a p-
integrable function. Then, there exists a sequence {y,} of non-negative
simple functions which increase to f (cf. Proposition 1.3.2). Since f is
p-integrable, so is ¢, and so ¢, will also vanish outside a set of finite
measure. Further

lon(z) — f(2)P < 2P| f()[P
for z € Q and, since |f|P is integrable, it follows from the dominated
convergence theorem that

/l‘Pﬂ"‘flpdm -0
Q

as n — oo. If f is an arbitrary p-integrable function, then we have
sequences {¢,} and {¢,} of simple functions vanishing outside sets of
finite measure and such that

f|¢pn—f"‘|pda: — Oandf|¢n—f_|pd$ — 0.
0 Q

Thus xn, = ¢n — ¥n is a simple function which vanishes outside a set of
finite measure and

[ bn= s dz — 0
as n — 00. This proves the result. I

Theorem 6.3.1 Let 1 < p < co. Let Q C RY be open. Then, C.(f),
the space of all continuous functions with compact support contained in
Q, is dense in LP(Q).

Proof: By the preceding proposition, we know that S is dense in L?(Q2).
Thus, given ¢ € S, it is enough to show that it can be approximated (in
the LP-norm) as closely as we wish by a continuous function with com-
pact support. Indeed, let € > 0. By Lusin’s theorem (cf. Royden [5]),
we can find a continuous function g, with compact support, such that
g = @ except possibly on a set whose measure is less than € and also
such that [g(z)| < ||¢|lc. Then

fn 90— o dz < 2°|lg|Puc.

This shows that C.(f2) is dense (with respect to the norm ||.||,) in S
which, in turn, is dense in LP(2). This proves the result. l
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Remark 6.3.1 In fact it can be shown that the space of infinitely dif-
ferentiable functions with compact support contained in 2 is dense in
LP(Q) for 1 < p < oo. For this we need to develop the theory of convolu-

tion of functions (cf. Theorem 6.3.3 below). For details, see Kesavan [3].
=

Corollary 6.3.1 Let Q@ C RN be an open set. Let1 < p < co. Then,
LP(Q2) is separable.

Proof: Recall that, by the Weierstrass approximation theorem, a con-
tinuous functiuon on a compact set can be uniformly approximated by
means of a polynomial and hence, by a polynomial with rational coeffi-
cients and such polynomials form a countable set.
We can write
2 = U2

where 0, = Q2N B(0; n); here B(0;n) is the ball centred at the origin and
with radius n in RY. Notice that Q, is bounded and is hence relatively
compact, i.e. Q, is compact.

Let € > 0 and let f be p-integrable over 2. Then, by the preceding
theorem, we can find a continuous function g, with compact support
such that || f — g||, < €. Since the support of g is compact, its support
will lie in some (2,. Thus, we can find a polynomial p with rational
coefficients such that, for all z € Q,,,

l9(z) - p(a)| < ——
|Qn|”

where [(2,,| denotes the (Lebesgue) measure of 2,,. Setting p = 0 outside
Q,, we then see that ||g — p||lp < € so that |f — p|l, < 26. Thus any
p-integrable function can be approximated in the norm |.||, by means of
a function which vanishes outside some 2, and is equal to a polynomial
with rational coefficients inside 2,. The collection of all such functions
being countable, we deduce that LP(f2) is separable for 1 <p < oco. B

Proposition 6.3.2 Let @ ¢ RY be an open set. Then, L®(Q) is not
separable.

Proof: Let x € . Let r = r(z) > 0 be chosen such that the ball
B(z;r) C Q. Define

1, if y € B(z;r)
0, qtherwise.

Xz(y) = {
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Set
Ur = {f € L% | IIf - xzlloo < 1/2}.

Then, for each = € §2, U, is a non-empty open subset of L*°(f2). Further,
if x # y, then U, N Uy = 0. For, if f belonged to their intersection,
then on one hand, since f € Uy, we have that |f(z)| < 1/2 in a small
neighbourhood of z. On the other hand, since f belongs to Uy, it follows
that |f(2)| > 1/2 in a small neighbourhood of z, which is a contradiction.

Now let E = {f,} be any countable set in L>(2). If such a set were
dense, then ENU, # 0 for each z € . However, any f, can belong
to at most one such open set U, since the sets U, are pairwise disjoint.
This is a contradiction since the number of open sets U, is uncountable.
Thus, no countable set in L*°({2) can be dense. B

Definition 6.3.1 Let @ C RN be an open set and let f : @ — R be a
measurable function. We say that f is locally integrable if [, |f| dz <
oo for every compact set K C 2. B

We denote the set of all locally integrable functions on 2 by L{ (12).

Proposition 6.3.3 Let f € L\ _(Q) be such that

loc

fnfgd:r=0

for all g € C.(R?). Then f =0 almost everywhere in 2.

Proof: Step 1. We first assume that f is integrable on € and that ||,
the measure of (2, is finite. Let € > 0. Then, there exists a continuous

function f;, with compact support, such that ||f— fi||1 < € (cf. Theorem
6.3.1). Thus, if g € C.(Q2), we have

e

Ky = {z€Q] fi(z) 2 &}
Ky = {z€Q] fi(z) < —¢}.

= ‘ fn (fi=fg dz| < 5“9”.00- (6.3.1)

Let

Then, K; and K, are disjoint and compact sets (since f; is a continu-
ous function with compact support) and by Urysohn’s lemma, we can
construct a continuous function h, also with compact support such that
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h=1on K; and h = —1 on Kj. Further, we can also have |h(z)| <1
forall z € . Set K = K; U K. Then

[ iz = fmflhdﬂfkflhdm,

whence, in view of (6.3.1), we have

flmdx . fflhdm < s+f fihl do < e+f \ful da.
K K Q\K K

Since | fi1(z)| < € on 2\ K, we deduce that

fn |f1] dz fk lfll dz + fQ\K |f1| dz
€ + 2¢|Q2|.

IAIA I

Thus,
Ifllh < If = filh + 1Al € 26 +2¢|Q).

Since ¢ is arbitrary, it follows that f(z) = 0 almost everywhere in Q.

Step 2. In the general case, we again write = U2 ;Q, where Q, =
Q2 N B(0;n). Then applying the result of Step 1 to the restriction of
f to Qy, denoted fl|n,, we get that f|o, = 0 almost everywhere in Q,
from which it immediately follows that f = 0 almost everywhere in 2. B

Let us now turn our attention to the space L!(Q).

Theorem 6.3.2 (Riesz Representation Theorem) Let Q C RV be
an open set. The dual of the space L'(Q) is isometrically isomorphic ta
L>(Q).

Proof: Step 1. There exists w € L?(2) such that w(z) > ex > 0 for all
z € K for every compact subset K of Q. Indeed, define w(z) = a, >0
on the set

E, = {zeQ|n<|z|<n+1},

where |z| denotes the Euclidean norm of the vector z € RY. Now choose
the constants o, such that

o0
z a2|E,| < oo,
—0
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where |E,| denotes the (Lebesgue) measure of the set E,. Then w has
the required properties.

Step 2. Let ¢ € L}(Q)*. Consider the mapping f — (wf) from L2(2)
into R. Clearly, this defines a linear functional which, by Hélder’s in-
equality, is also continuous. Thus, by the Riesz representation theorem
(cf. Theorem 6.2.1) applied to the case p = 2, there exists v € L?(Q)
such that

owh) = [ fods
Q
for all f € L2(R2). Thus, we have

-/gf'vd:z:

Step 3. Set u(z) = v(z)/w(z) for z € Q. Since w never vanishes, this
is well defined and u is measurable. We claim that u € L*°(€2) and that
[lullooc < |l¢ll- To see this it is sufficient to show that, for any constant
C > ||¢|l, we have that the set

A = {z€]| |u(z)| > C}

< lell-llw sl (6.3.2)

is of measure zero.
Assume the contrary for some such C' > ||¢||.Then, there exists a
subset B of A of finite and positive measure. Consider the function

+1, if x € B and u(z) > 0,
i) = —1, if z € B and u(z) <0,
0, ifzeO\B.

Clearly, f is square integrable (since the measure of B is finite) and we
can use it in (6.3.2). We then get

[ julw de < |l f w dz
B B

and, using the definition of A, which contains B, we get

C’fwdm < ||go||/wd:c
B B

which is a contradiction to the choice of C, since f gw dz > 0.
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Step 4. Thus we now have u € L*°(Q) with ||ullec < ||| such that, for
all f € L2(Q),

p(wf) = -/;zfu'w dz.

Let g € C.(2). Then, by choice of w, f = g/w is square integrable and
so, we get, for all g continuous with compact support in €2,

o(g) = L ug dz. (6:3.3)

Since C.(2) is dense in L(f2), the above relation also holds for all g €
L'(R2). Further, it follows that

le(@)] < lelllulleo

for all g € L!(Q2) from which we deduce that ||| < ||uflco-

Step 5. Thus, for every ¢ € L(Q)*, we have u € L*(Q) such that
llell = |lulloo and such that (6.3.3) holds for all g € L*(f2). Such a u is
unique as well. Indeed if we have two essentially bounded functions u;
and ug such that

/g(ul-—ug) dr = 0
Q

for all g € L'(2), then it is in particular true for all g € C.(Q) and, since
essentially bounded functions are locally integrable, it follows that (cf.
Proposition 6.3.3) u; —us = 0 almost everywhere, i.e. u; = ug in L*°().

Step 6. If u € L°(Q), then if we define T}, as a linear functional on L(f2)
via the right-hand side of (6.3.3), then we have just seen that u +— T, is
surjective and that it is an isometry between L>®(Q) and L!(2)*. This
completes the proof. B

Proposition 6.3.4 Let Q@ C RN be an open set. Then, L(R) is not
reflerive.

Proof: Without loss of generality, assume that 2 contains the origin.
Let n be sufficiently large so that the ball centred at the origin and of
radius 1/n, denoted B, is contained in Q. Let o, = |Bp|™!, where, as
usual, |B,| denotes the (Lebesgue) measure of B,. Let fn(z) = ay for
all z € B, and let it vanish on Q\B,. Then f, € L}(Q) and ||fa]1 =1
for all n. If L*(Q2) were reflexive, then the sequence {f,} would contain
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a weakly convergent subsequence (cf. Theorem 5.4.2), say {f,, }. Let f
be its weak limit. Then, for every h € L*(f2) we must have

f fach dz — f fh dz. (6.3.4)
Now choose h € C.(2\{0}). Then, for sufficiently large k, we have that
/ fohdr = 0
Q

(since the two functions in the integrand will then have disjoint sup-
ports) and so, it follows that, for all such h, we have [, fh dz = 0. By
Proposition 6.3.3, it then follows that f(z) = 0 almost everywhere in
Q\{0} and so f(z) = 0 almost everywhere on €2 as well. On the other
hand, if we choose h(z) =1 for all z € Q in (6.3.4), we get [, f dz =1,
which is a contradiction. Thus, L(Q) is not reflexive. B

Corollary 6.3.2 Let @ C RY be an open set. Then, L®(Q) is not
reflexive.

Proof: Since L!(Q)* = L*®(Q), the result follows immediately from the
preceding proposition (cf. Corollary 5.3.3). W

To sum up, we have that LP(Q)* = LP'(Q) for 1 < p < oo. The
spaces LP(2) are separable for 1 < p < oo and reflexive for 1 < p < oo.
The space L>(2) is neither separable nor reflexive.

We conclude by proving an important inequality.

Theorem 6.3.3 (Young’s Inequality) Let 1 < p < oo. Let f €
LY(RN) and let g € LP(RN). Then the map

T - fRN fy)g(x —y) dy

is well defined almost everywhere in RY. The function thus defined is
denoted f * g and is called the convolution of f and g. Further, fxg €
LP(RY) and we also have

If+gll, < lIfll1llllp- (6.3.5)

Proof: Let h € LP"(RV), where p* is the conjugate exponent of p. The
function (z,y) — f(¥)g(z — y)h(z) is measurable on R x R¥; consider
the iterated integral

- f j F@)g(z — v)h(z)| dy dz.
RY JRY
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Since the Lebesgue measure is translation invariant, we get that

I = o @) (Jay 9z - )h(a)] da) dy

< llgllplibllpe an |f(v)| dy
= |fllhllgllpllhllps < oo.

Thus by Fubini’s theorem, the integral
| fws@—v)h(o) dy
RN
exists for almost all z € RVN. Let us choose h € L?"(RM) such that

h(z) # 0 for all z € RN. For example, we can choose h(z) = exp(—|z|?).
Thus, it follows that the integral

f f(y)g(z —y) dy
RN .

exists for almost all z € R" and so the convolution f g is well defined.
Further, by the above computation it follows that the map

he [ B 0)(o) do

is a continuous linear functional on LP*(RY) whose norm is bounded
by ||f|l1]lgllp- It follows from the Riesz representation theorem that
f*g € LP(RV) and that (6.3.5) holds. W

Remark 6.3.2 By a simple change of variable it is easy to see that we
can also write the convolution of f and g as

(F+9)a) = [ fle—v)atw) do.

Remark 6.3.3 The result of Theorem 6.3.3 is valid for the case p =1
as well. The proof of this fact is left as an exercise (cf. Exercise 6.16).
=]

6.4 The Spaces W'?(a,b)

In this section, we will study a very special case of a class of function
spaces called Sobolev spaces.
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Throughout this section, we assume that (a,b) is a finite interval in
R and that 1 < p < 0o. We will denote by D(a, b) the space of infinitely
differentiable functions with compact support contained in the interval
(a,b). Recall that (cf. Remark 6.3.1) D(a,b) is dense in LP(a,b) for
1<p<oo.

Lemma 6.4.1 Let f € LP(a,b). Assume that there exists g € LP(a,b)
such that, for all ¢ € D(a,b), we have

b b
/ fo' dz = —f gy dz. (6.4.1)
a a

Then such a g is unique.

Proof: If there were two functions g; and go satisfying (6.4.1) for a
given f, then '

b
f(91—92)‘:0 dz = 0
a

for all ¢ € D(a,b). Since g1 — go is locally integrable, it now follows that
g1(z) = go(z) almost everywhere (cf. Proposition 6.3.3). B

Definition 6.4.1 Let (a,b) C R be a finite interval and let 1 < p < oco.
The Sobolev space WP (a,b) is given by

WlP(a,b) = {f € LP(a,b) | there ezists g € LP(a,b) satisfying (6.4.1)}.
Further, we define
1
e = CIFIZ+ lghz)s. m

It is a routine verification to see that ||.||1,, defines a norm on W'?(a, b)
and this is left to the reader. Thus, W'?(a,b) is a normed linear space.

Example 6.4.1 Let f € C'[a,b]. Clearly f € LP(a,b). If f’ denotes the
derivative of f, then f’ € Ca,b] and so f' € LP(a,b) as well. Further,
if ¢ € D(a,b), then since p(a) = ¢(b) = 0, we have, by integration by

parts,
b b
/ fo dz = —/ o dx.
a a

Thus, f € W1P(a,b) and it satisfies (6.4.1) with g = f'. W
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By analogy with the preceding example, if f € WP(a,b), and if
g is the associated function as in (6.4.1), then we denote g by f'. In
particular, we have

e = CIFIE + 1F12)7

In the literature, ' is known as the generalised or distributional derivative
of f.

Proposition 6.4.1 Let 1 < p < oo and let (a,b) C R™ be a finite
interval. Then, WP (a,b) is a Banach space.

Proof: We just need to prove the completeness. Let {f,} be a Cauchy
sequence in W1P(a,b). Then {f_} and {f,} are both Cauchy sequences
in LP(a,b). Let f, — f and f], — g in LP(a,b). Now, if ¢ € D(a,b), we

have
b b
[t do = - [ fipdo
a a

for all n. Passing to the limit as n — 0o, we deduce that the pair (f, g)
satisfies (6.4.1). Thus f € WP(a,b) and f = g. Further, it follows that
f, — f in W1P(a,b). This completes the proof. B

Proposition 6.4.2 The space WP(a,b) is reflexive if 1 < p < oo and
separable if 1 < p < oo.

Proof: Since the space LP(a,b) is reflexive if 1 < p < 00, so is the space
(L?(a,b))? (why?). Similarly, (LP(a,b))? is separable if 1 < p < oo.
Now, the space W1P(a,b) is isometric to a subspace of (LP(a,b))? via
the mapping f — (f,f’). Since WP(a,b) is complete, the image is a
closed subspace of (LP(a,b))? and so it inherits the reflexivity and sep-
arability properties from that space. This completes the proof. B

We will now study some finer properties of these Sobolev spaces.

Lemma 6.4.2 Let ¢ € D(a,b). Then, there erists ¥ € D(a,b) such
that ¥’ = @ if, and only if,

/:tp(t) dt = 0.
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Proof: Assume that ¢ = ¢/ for some ¢ € D(a,b). Then, since ¥(a) =
P(b) = 0, it follows that

b b
[ o(t) dt = / ¥(t) dt = (b) - p(a) = O.

Conversely, let [ : @(t) dt = 0. Let the support of ¢ be contained in
[e,d] C (a,b). Now, define

t
() = f o(s) ds.

Clearly 1 is infinitely differentiable since ¢ = ¢. Further, 1 vanishes
on the interval (a,c) and, by hypothesis, on the interval (d,b) as well.
Thus the support of % is also contained in [c, d] and so ¥ € D(a,b). This
completes the proof. I

Corollary 6.4.1 Let f € LP(a,b) where 1 < p < 00. Assume that

f:fsa’okc =0

for all ¢ € D(a,b). Then f is equal to a constant almost everywhere in
(a,b).

Proof: Choose ¢ € D(a,b) such that [ : wo(t) dt = 1. Let pE D(a,b)
be an arbitrary element. Set

o= o= ([ o0 )00

Then f: ¢(t) dt = 0 and so ¢ = 9/ for some p € D(a,b). Thus,
J? f¢ dt = 0 which yields

f:fso = f:sodt-f:fsoodt-

Setting ¢ = f: fio dt, we get

/:(f—c)sodt =0
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for all ¢ € D(a,b), whence, by Proposition 6.3.3, it follows that f(z) = ¢
almost everywhere in (a,b). This completes the proof. W

Remark 6.4.1 If ¢; were another function in D(a, b) such that [ : p1(t)dt
= 1, then since [ : (o — 1) dt = 0, it follows that g —¢; = 9/ for some

% € D(a,b). Therefore, by hypothesis, [ f(¢o — 1) dt = 0. Thus, the
constant ¢ defined in the above proof does not depend on the choice of
the function o whose integral is unity. B

Let us denote by C*[a,b] the space of all functions which are in-
finitely differentiable in the open interval (a,b) and such that the func-
tions and all their derivatives possess continuous extensions to [a, b].

Proposition 6.4.3 Let1 < p < 0o. Then C®[a,b] is dense in WP (a,b).

Proof: It is clear that if f € C®[a,b], then f € WP(a,b) and its
distributional derivative is just its classical derivative. Now, let f €
W1P(a,b). Since f' € LP(a,b), choose @, € D(a,b) such that @, — f in
L?(a,b). Define

; T
wn@ = [ enlt) at.
a
Then %, € C*®[a,b]. Further, for z € [a, b],

b 1
[%n(2) — Ym(z)| < / lon(t) — em(t) dt < (b—a)?" [lon — omllp
a
by Holder’s inequality. Thus,

ll9n — ¢m||p < (b—a)llen — ‘Pm”p-

It then follows that {1} is Cauchy in LP(a,b) (since {¢y}is Cauchy)
and so let 9, — h in L?(a,b). Since 9, = ¢y, it is now easy to verify
that h € W1?(qa,b) and that h’ = f’. By the preceding corollary, it fol-
lows that f — h is equal to a constant, say c¢. Thus, if we set x, = ¥n +¢,
then x, € C*®[a,b], xn — f in L?(a,b) and x}, — f' in LP(a,b). This
completes the proof. W

We now briefly digress to recall some facts about absolutely contin-
uous functions.

Definition 6.4.2 A function f : [a,b] — R is said to be absolutely
continuous on [a,b] if, for every € > 0, there exists § > 0 such that



6.4 The Spaces W'?(a,b) 183

whenever we have a finite collection of disjoint intervals {(z;,z})}™,
contained in (a,b) satisfying

> (= —=) < 6,

i=1
we have

S - fai)] < e ®
i=1

Clearly, any absolutely continuous function is uniformly continuous.
It can also be shown (cf. Royden [5]) that an absolutely continuous
function is differentiable almost everywhere and that its derivative is an
integrable function. The following two results are very important (cf.
Royden [5]).

Theorem 6.4.1 A function f : [a,b] — R can be ezpressed as an in-
definite integral of an integrable function if, and only if, it is absolutely
continuous. In this case we have

flz) = f(a)+fxf'(t) dt. B

Theorem 6.4.2 (Integration by parts) Let f and g be absolutely
continuous functions on [a,b]. Then

b b
j; f@)d®) dt = F(b)g(b) — F(a)g(a) - f F(t)g(t) dt. m

If f € Cl[a,b], then it is absolutely continuous. In particular, if
¢ € D(a,b), it is absolutely continuous. Consequently, by virtue of
intergation by parts, it follows that if f is absolutely continuous on [a, b]
and if ¢ € D(a,b), then

b b
/fw’dt = —f ' dt
a a

so that the distributional derivative of f is f'.

Proposition 6.4.4 Let 1 < p < co. Let f € W'P(a,b). Then f is ab-
solutely continuous, i.e. f is equal, almost everywhere, to an absolutely
continuous function.
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Proof: Let us define
I
w) = f f(¢) dt.

Since f’ € LP(a, b) and since p > 1, it follows that f’ is integrable on (a, b)
and so u is an absolutely continuous function. Further, since integration
by parts is valid for absolutely continunus functions, it follows that for
all ¢ € D(a,b), we have

-/;ugo dr = - ffzpd:r

Thus u € W'P(a,b) and u’ = f’. Then, as before, it follows that f — u
is equal to a constant almost everywhere. Thus f(z) = u(z) + ¢ almost
everywhere in z and the latter function is absolutely continuous. H

The above proposition states that W?(a,b) consists of abuolutely
continuous functions (upto equality almost everywhere). In particu-
lar, we can say that W'P(a,b) is contained in C[a,b], i.e. every ele-
ment of W'P(a,b) is represented by means of an (absolutely) continuous
function. Such a representative must be unique, for, if two continuous
functions are equal almost everywhere, then they are equal everywhere

(why?).

Theorem 6.4.3 (Sobolev’s Theorem) The inclusion map from W'P(a,b)
into Cla, b| is continuous.

Proof: Let f,,f be in W!P(a,b) with absolutely continuous representa-
tives f,, f. Assume that f, — f in W'?(a,b). Then | f, — f|l, — 0 and
f, = f'llo = 0. Now, by absolute continuity, we have

@) = fala) + [ " p0) dt (6.4.2)

- and

f@ = f@+ [ roa (6.4.3)

We claim that {fn(a)} is Cauchy. If not, there exists € > 0 such
that, for every N, there exist m,n > N satisfying |fm(a) — fn(a)| = €.
Then, it follows from (6.4.2) that

fn(@) = fa(@)] 2 €= [1ffn = Fallo(e - @)
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by an application of Holder’s inequality. Choose N large enough such
that, for all n,m > N, we have

If2 = Follo(d— @)7* <

N ™

Then, for all z € (a,b) we have
€
()~ Fal@)] 2
whence it would follow that

1
I fm = Fallp = (b-a)pg > 0

whch contradicts the fact the {f,} is cauchy in LP(a,b).
Thus {f.(a)} is Cauchy and now, for any z € [a, b),

(@) = fa(@)] < 1fm(@) = Fa(@)] + 1 fin — Fallp(b — @)7

by another application of (6.4.2) and Hoélder’s inequality. This shows
that {fn} is uniformly Cauchy and so it converges to a continuous func-
tion f on [a,b]. But since ||f, — f|l, — 0, it follows that (cf. Corollary
6.1.1), at least for a subsequence, we have f, (z) — f(z) almost every-
where, from which we deduce that f = f. Thus, f, = finC [a, b] which
completes the proof. I

Theorem 6.4.4 (Rellich’s Theorem) The unit ball in WP (a,b) is
relatively compact in LP(a,b).

Proof: The inclusion map W'?(a,b) C LP(a,b) is the composition of
the following inclusion maps:

W'P(a,b) C Cla,b] C LP(a,b).

The first inclusion above is continuous by the preceding theorem. The
space C[a,b] is a subspace of L*(a,b) and the ‘sup-norm’ is the same
as ||.||co. Now it follows that the second inclusion is also continuous by
Proposition 6.1.3.

Let B be the unit ball in W'P(q,b). Thus, if f € B, then

115 + N5 < 1.

Then, by the preceding theorem, it follows that B is bounded in C|a, b]
as well, since the inclusion map is continuous (cf. Proposition 2.3.1 (iv)).
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Further, let z,y € [a,b]. Assume, without loss of generality, that z < y.
Then

|f(z) = f()| <

[ s dt\ < 1 lbly—2l* < |y -l

It now follows immediately that B is equicontinuous as well since for
g > 0, if we choose § < €P°, then |z —y| < J implies that |f(z)— f(y)| < &
for all f € B. Thus, by the theorem of Ascoli, it follows that B is
relatively compact in C[a, b].

Thus, any sequence in B will have a subsequence which is convergent
in C[a,b], which will also, a fortiori, converge in LP(a,b). This proves
that B is relatively compact in LP(a,b). B

Definition 6.4.3 Let (a,b) C R be a finite interval and let 1 < p < oo.
The closure of D(a,b) in WP (a,b) is denoted W,?(a,b). B

Theorem 6.4.5 Let f € W'P(a,b) with f absolutely continuous. Then
f € Wy (a,b) if, and only if, f(a) = f(b) = 0.

Proof: Let f € W;?(a,b). Then there exists a sequence {p,} in D(a, b)
such that ¢, — f in W'P(a,b). Then ¢, — f uniformly on [a,b] and so

it follows immediately that f(a) = f(b) = 0.
Conversely, let f(a) = f(b) = 0. Then (cf. Theorem 6.4.1) we have

f(z) = / " F(t) dt

and so it follows that [’ f'(t) dt = 0. Let pn € D(a,b) such that
llen — f'llp — 0. Then

b b .
[onat= [ dt[ < lon = Fllob—a)F = 0
a a

b
/c,ondt ~ 0.
a

Let wo € D(a,b) such that [’ o dt = 1. Then if

b
¢n=¢n_(f ‘Pndt)ﬁoﬂs
a

and so



6.4 The Spaces W1?(a,b) 187

we also have that ||, — f'||, — 0 and f: Yy dt = 0. Thus ¥, = X,
where x,, € D(a,b) as well (cf. Lemma 6.4.2). Since

xn(z) = fa zwn dt,

it follows that x, converges to f uniformly and so |x, — f|lp — O as
well. Thus x, € D(a,b) and x, — f in WP(a,b). This proves that
f e W, P(a,b). B

Notice that if f = 1, then f/ = 0 so that, in WP(a,b), the map
f — [|f'|l, does not define a norm, but only a semi-norm, i.e. while
|If'|lp = O does not imply that f = 0, all other properties of a norm are
satisfied. However, in the space W& P(a, b), we have the following result.

Theorem 6.4.6 (Poincaré’s Inequality) Let f € W,?(a,b). Then

Iflle < (&= a)lIf']lp- (6.4.4)
Thus the function f — ||f'||, defines a norm on Wol’p (a,b) equivalent to
the usual norm on this space.

Proof: Let f be absolutely continuous and represent f. If f € Wé ®(a,b),
then, since f(a) =0, we have

T
f@ = [ roae
a
Then, by Holder’s inequality, we have

1
If@)| < [1fll(b— a)?".
Thus,
4 1+4 ’
Il £ [fllp(6—a)e™?™ = (b—a)lfll,

which proves (6.4.4).

In particular, if ||f'||, = 0, it follows that ||f||, = 0 and so f = 0 in
W[}"’(a, b). The other properties of a norm are easily verified. Thus we
have two norms on W,?(a, b):

def
Ifll1p and [flip = [IF -

Clearly,
1
iflip < IIfllip < [(6—a)? +1]7|f|1p.



188 6 LP Spaces

Thus the two norms are equivalent. Il

Sobolev spaces can also be defined when p = 00. The definition can
also be extended to cover functions defined on arbitrary open sets 2 C
RN, It is also possible to define ‘higher order distributional derivatives’
and define Sobolev spaces W™P(2), m € N, based on these derivatives.
All these spaces have properties similar to those proved in this section,
with or without additional hypotheses. For a detailed study of Sobolev
spaces, see Kesavan [3]. See also the Exercises 6.24-6.26 below.

6.5 Exercises

6.1 Let (X,S, 1) be a measure space. let 1 < p,q,7 < 0o such that

1 1 1
el mm 2
P q r

If f e LP(u) and g € L9(u), show that fg € L™(u) and that

Ifgll- < [Ifllplllle-

6.2 Let (X,S,u) be a measure space and let 1 < p < oco. Define, for
t>0,

het) = w({lf] > 1)),
Show that o
mw==p£ 7=y (1) dt.

(Hint: Write hy as an integral over a subset of X and apply Fubini’s
theorem (cf. Theorem 1.3.5).)

6.3 (a) Let (X, S, u) be a measure space. Let fy,gn, f,g be measurable
functions such that f, — f and g, — g almost everywhere in X. Assume
further that |f,(z)| < ga(z) for all z € X and that

/gndp —>/gdp, < 00
X X

as n — oo. Show that
[ s = [ 1
X X
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as n — oo. (Hint: Apply Fatou’s lemma (cf. Theorem 1.3.2) to
gn+ fn >0 and to gn — fr, 2 0.)

(b) Let 1 < p < o0. Let f, and f € LP(u) and assume that f,(z) — f(z)
almost everywhere in X. Show that f, — f in LP(y) if, and only if,

Ifrlle = NIfllp-

6.4 Let (X,S,u) be a measure space and let 1 < p < oco. Let f, — f
in LP(p). Let g, be a sequence of measurable functions converging to a
measurable function g almost everywhere in X. Assume further that g,
and g are all uniformly bounded by a constant M > 0 in X. Show that
fngn — fg in LP(u). '

6.5 Let (X,S, ) be a measure space. A sequence of measurable func-
tions f, is said to converge in measure in X to a measurable function f
if, for every € > 0,

Jim p({|fn -l 2€}) = 0.

In this case, we write f, = f. If 1 < p < oo and if f, — f in LP(u),
show that f, 5 f.

6.6 Let (X,S,p) be a measure space and let 1 < p < oo. Let f :

X x X — R be such that for almost every y € X, the section f¥ (cf.
Definition 1.3.7) is p-integrable. Define, for z € X,

o(z) = fx £(z,y) duy).

Show that g € LP(u) and that

lell, < fx T o)

6.7 Let g € C.(R). Define ¢(g) = g(0). Then ¢ can be extended to a
continuous linear functional on L*°(R). Show that there does not exist
f € L'(R) such that

w(g) = _/mgfdm

for all g € L*°(R). (This gives another proof that L*°(R) is not reflexive.)
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6.8 Let h € RN. For a (Lebesgue) measurable function f defined on
RN define its translation by h by

fu(z) = flz+h).
If f € LP(RY), show that f, € LP(R") and that
If —fall, — 0
as h — 0 in RY for any 1 < p < oo0.

6.9 Let
fo = X[nn+1]»

the characteristic function of the closed interval [n,n + 1] for n € N (cf.
Definition 1.3.5). Then {f,} is a bounded sequence in L}(R). Show that
it does not have a weakly convergent subsequence. (In view of Theorem
5.4.2, this gives another proof that L!(R) is not reflexive.)

6.10 Let f € C[0, 1] be such that, for all n > 0,

1
/ 2" f(x) dx = 0.
0
Show that f = 0.

6.11 (Hardy’s inequality) Let f € LP(0,00), where 1 < p < co. Define

l T
o@) = 7 [ foa
T Jo
for z € (0,00). Show that g € LP(0,00) and that

p
lell, £ ——IIfllp
p—1

(Hint: Prove it first for f € C.(0,00), f > 0.)

6.12 A function ¢ : (0,00) — R is said to be a step function if

ole) = 3 esxn,(a)

Jj=1
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where I;,1 < j < n are intervals contained in (0,00) and, as usual, xg
denotes the characteristic function of a set £. Show that step functions
in (0, 00) are dense in L'(0, 00).

6.13 (Riemann-Lebesgue lemma) Let h be a bounded and measurable
function on (0, 00) such that
1 C
lim - [ h(t)dt = 0.

c—00 C 0

(a) Let f = x(c,q), Where [e,d] C (0,00). Show that

fim / ~ f(®)h(wt) dt = o. (6.5.5)
w—00 0

(b) Deduce that (6.5.5) is true for all f € L!(0, 00).
(c) If f € L'(a,b) where (a,b) C (0,00), show that

n—oo

b b
lim f f(t)cosnt dt = lim f f(t)sinnt dt = 0.
a AR Ja

6.14 (a) Let (a,b) C (0,00) be any finite interval. Let f,(t) = cosnt
and let g,(t) = sinnt. Show that f, — 0 and g, — 0 in L?(a,b) for any
1<p<o.

(b) What is the weak limit of h, in LP(a,b) for 1 < p < oo where
hn(t) = cos® nt?

6.15 (a) Consider the trigonometric series

o0
% + Z(‘::.-,ﬂ cos nt + by, sinnt).

n=1

Show that it can written in the amplitude-phase form

% + dp, cos(nt — ¢y).

Write down the relations between ay, b, and d,, ¢n.

(b) (Cantor-Lebesgue theorem) Show that if a trigonometric series as in
(a) above converges over a set E whose measure is strictly positive, then
a, — 0 and b, — 0 as n — oo. (Hint: Use the amplitude-phase form of
the series.)
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6.16 If f and g € L'(R"), show that,
frg = f fW)eg(z —y) dy
{N

is well defined for almost all z € RM. Show also that fxg € L(R") and
that

If*glln < [Ifllxllell:-
6.17 Let {pc}c>0 be a family of C* functions in RV such that for each

e > 0, we have that p.(z) > 0 for all z € R, the support of p is
contained in the closed ball with centre at the origin and radius ¢, and

/RN pe(z) dz = 1.

(a) Let ¢ € C.(R"). Show that p. * ¢ converges uniformly to ¢ on RV
as € — 0.
(b) Deduce that, if u € LP(RV), then p. * u converges to u in LP(RV)
as e — 0.

6.18 Let {f,} be a bounded sequence in L?(a,b), where (a, b) is an open
interval in R and 1 < p < oo. Show that f, — f in LP(a,b) when
1<p<ooandf, > fin L®(a,b) if, and only if, for every ¢ € D(a,b),

we have " "
f Fpde a] fo de.
a a

6.19 Let f : [0,1] — R be a continuous function such that f(0) = f(1).
Define the sequence {f,} as follows. Let fn(z) = f(nz) on [0, 1] and
extend this periodically to each subinterval [%, %] for 2 <k <n. Let

m = [ f(t) dt. Show that f, — f in LP(0,1) for 1 < p < oo and that
f, = f in L>(0,1), where f(t) = m for all ¢ € [0,1].

6.20 Let (a,b) C R be a finite interval and let f : [a,b] — R be a
Lipschitz continuous function i.e. there exists K > 0 such that for all
z,y € [a,b], we have

|f(z) = f(¥)| < Klz—yl.
Show that f € W'P(a,b) for all 1 < p < co.
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6.21 Leta<c<binR. Let f: [a,b] — R be continuous. Assume that
f € WP(a,c) and that f € W1P(b,c). Show that f € W1?(a,b).

6.22 Let f: [—1,1] — R be given by

_ o, ifze[-1,0)
fle) = {1, if z € [0,1]

Show that f € W1?(—1,1) for 1 < p < 0o. (Thus, continuity is essential
in the previous exercise.)

6.23 (a) Let f : [a,b] — R be absolutely continuous and assume that

b
/ f(t)dt = 0.
a
Let 1 < p < 0o. Show that

@) < 20— a)%||f'll»

for all z € [a, b].
(b) (Poincaré-Wirtinger Inequality) Deduce that, for all f € W'P(a,b)
such that f: f(t) dt =0, we have

Il < 2(5— a)lIf'llp.

6.24 (a) Define W1P(R) exactly as in Definition 6.4.1, with R replacing
the interval (a,b) in that definition as well as in relation (6.4.1). Let ¢ be
a C* function on R with compact support. Show that, if f € W1P(R),
then (f € W1P(R) as well, where (¢f)(z) = ((z)f(z).

(b) Let ¢ be a C* function on R with compact support contained in
[—2,2] such that 0 < {(z) < 1 for all z € R and such that { = 1 on
[-1,1]. Define {m(z) = {(x/m) for all z € R. Show that if u € W1P(R)
for 1 < p < oo, then {mu — u in WHP(R) as m — oo.

6.25 Let (a,b) C R be a finite open interval. Let m > 1 be a positive
integer. Define, for 1 < m < oo,

there exist g; € LP(a,b), 1<i<m
such that
i ;b
f:fj—j dr = (-—1)‘_];]L gip dz
for all ¢ € D(a,b)

W™P(a,b) = {fe LP(a,b) |
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The functions g; are called the generalized successive derivatives of f
and we denote f() = g;. Define

1

m. »
[fllmp = (||f||;+2||ff*’n;:)
i=1

for f € W™P(a,b).
(a)Show that ||.||m,p defines a norm on W™ P(a,b) which makes it into a

Banach space which is separable if 1 < p < 0o and reflexive if 1 < p < o0.
(b) Show that if f € W™P(a,b), then f € C™ 1[a,b).

6.26 Let W, "?(a,b) denote the closure of D(a,b) in W™P(a,b).
(a) Show that f € W™P(a, b) belongs to Wy "?(a, b) if, and only if, f(a) =
f(b)=0and f@(a) = fO()=0forall 1 <i<m—1.
(b) Show that
f o [flmp < IF™,

defines a norm on W;"P(a,b) which is equivalent to the usual norm
I-llm.p-



